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The evolution of a vortex ring in an ideal fluid under self-induction from a flat and 
elliptic configuration is followed numerically using the cut-off approximation (Crow 
1970) for the velocity at the vortex. Calculations are presented for four different axes 
ratios of the initial ellipse. A particular choice is made for the core size and vorticity 
distribution in the core of the vortex ring. When the initial axes ratio is close to 1, the 
vortex ring oscillates periodically. The periodicity is lost as more eccentric cases are 
considered. For initial axes ratio 0.2, the calculations suggest a break-up of the ring 
through the core at one portion of the ring touching that at another, initially distant, 
portion of the ring. 

Results from quantitative experiments, conducted a t  moderate Reynolds number 
with the vortex rings produced by puffing air through elliptic orifices, are compared 
with the calculations. The agreement is fairly good and it is found that a vortex ring 
produced from an orifice of axes ratio 0.2 breaks up into two smaller rings. The 
relevance of the results to the vortex trail of an aircraft is discussed. 

1. Introduction 
In recent years considerable interest has been shown in the mechanism responsible 

for destroying the trailing vortex system of an aircraft. The trailing vortices, made 
visible by the condensation of moisture in their cores, are observed to undergo a slow 
instability: wavy disturbances grow on both trailing vortices and reach an amplitude 
such that the vortices touch at the nearer points and break up into a sequence of 
distinct vortex rings. The form of the rings is such that its projection onto the plane of 
maximum projected area is roughly elliptic in shape. Once the rings have formed, the 
vortex trail soon ceases to be visible. 

The growth of waves on trailing vortices was studied analytically by Crow (1970) 
who showed that small perturbations of the vortices in the form of plane waves of 
sufficiently long wavelengths are unstable. Later Moore (1972) followed the growth of 
symmetrical waves on trailing vortices numerically and showed that waves grow to 
such an amplitude that they touch at the nearer points. Thus an explanation of the 
observed looping process is to hand. 

The mechanism by which the vortices break up to form vortex rings is not 
understood, Nor is it  clear that the rapid loss of visibility of the rings imply their 

t Visiting Physiological Flow Studies Unit, Department of Aeronautics, Imperial College, 
London, during the preparation of this paper. 
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disintegration; care must be taken in interpreting observations which depend on the 
retention of smoke particles or water droplets in the vortex cores. It is possible that the 
non-circular form of thevortex ringswhich are formed is sipficant to the observations. 
Thus it is of interest to know what happens to an initially non-circular vortex ring. 

In this paper an initial-value problem is studied. Given a plane elliptic vortex ring, 
it is proposed to follow its subsequent motion and deformation numerically. It will 
be shown below that a non-circular ring must necessarily deform. 

The choice of a vortex ring of elliptic shape is also relevant to the study of a wake of a 
bird in forward flight. Photographs from Kokshaysky's (1979) experiments clearly 
show deforming vortex rings in the wake. The motion of the wings is such that in one 
complete beak the bird leaves behind it a vortex ring of roughly elliptic shape in a 
plane inclined at  an angle to the direction of flight. Rayner (1979) has modelled such a 
wake by a chain of elliptio vortex rings to estimate power consumption and mean lift 
coefficients. He ignores the deformation of the rings in his calculations. 

Previous numerical study of the motion of an elliptic vortex ring is due to Arms & 
Hama (1905) (see also Viets & Sfona 1975) who used local induction approximation 
in their calculation of the motion. This wsumes that the motion of a thin vortex 
filament is governed by the approximate equations 

where b and p are respectively the local binormal end radius of curvature at X, a point 
on the filament, and 8 is the arc distance along the filament. 8 is taken to be an unspeci- 
fied constant although a proper treatment of the Biot-Savart integral shows that 
6 = c/p, where c is the core radius. Thus the approximation neglects the dependence of 
6 on p and on any variations of the core siae during the motion m well w neglecting 
the contribution to velocity from distant parts of the vortex. The neglecting of this 
contribution means that the approximation loses the Crow instability. Thus the 
approximation is not satisfactory if this important feature of the evolution of a vortex 
filament is not to be excluded from consideration. 

The cut-off theory, due to Crow (1970), provides a more accurate method of approach 
and is used here to study the motion of the vortex ring. The fluid is regarded a8 inviscid, 
incompressible and of uniform density. Wherever possible, the vortex ring is t r e h d  &B 

being of zero oross-section and the velocity field due to the vortex is calculated ming the 
Biot-Savart line integral. Then Helmholtz law, that in inviscid fluid vortex lines move 
with the fluid, leads to an integro-diffyrential equation for the motion of the vortex ring. 

However, the BiotSavart line inbgral diverges on the vortex ring itself. The 
difficulty is overcome by means of a 'cut-off', the choice of which depends on the 
ahoture of the vortex ring. The influence of the internal structure on the motion of 
the vortex ring enters only through the cut-off. 

A rigorous justification of the cut-off method for finite-amplitude disturbances to a 
vortex has been provided by Moore & Saffman (1972).t In  the absence of axial flow in 
the vortex filament, which ie the case here, they show that the error in the velocity 
obtained by the cut-off method ia O(c*/p*), The method is deeoribed more fully later. 

t The serlier jua6ifiaetion of Widnall, BUer & Zeley (1972) do- not speoify how the orom- 
motional &re8 of the vortex filament ia to vary: the varhtion iis negligible for hfhhwhd 
dietortiom of the vortex, but it aennot be ignored for hite-emplitlrds distortions. 
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It may be noted from (1.1) that the velocity at a point on the vortex is approximately 
inversely proportional to the local radius of curvature. Since the curvature varies along 
the length of an elliptic vortex ring, the velocity will vary accordingly so that the ring 
will deform from its elliptic shape as it moves. Experiments by Oshima (1972) with 
vortex rings of initially lenticular shape and by Kambe & Takao (1971) with various 
other non-circular initial shapes qualitatively show the deformation of such vortex 
rings. 

In $2, small perturbations of elliptic mode to a circular vortex ring are discussed 
while in $ 3  the numerical procedure used to integrate the equation of motion of an 
initially elliptic vortex ring is described. In $ 4  numerical results are presented for 
vortex rings of different eccentricity and core size. The initial core size used for each 
elliptic ring is that predicted by considering the impulsive motion, in a perfect fluid, 
of a flat elliptic disc which is then dissolved away. This method of fixing the core size 
is due to Taylor (1953) and is described in appendix A. 

In $ 5 ,  a quantitative experiment is described for observing the motion of an initially 
elliptic vortex ring produced by puffing air through an elliptic orifice. The results of 
the experiment are compared with those of the numerical calculations in $6. Estimates 
of the vortex parameters for rings produced in this way are obtained in appendix B 
using a simple model (Saffman 1978) of the flow. 

In $7 the relevance of the results to the vortex trail of an aircraft is discussed. 

2. Linear theory 
The stability of a thin circular vortex ring to small sinusoidal perturbations was 

considered by Widnall & Sullivan (1973). In  a co-ordinate system moving with the 
velocity of an unperturbed circular vortex ring V, the perturbed ring was taken to be 

X = (R+rei'RB)er+zzide, (2.1) 

where e, and e, are unit vectors in the radial and axial directions, 8 is the azimuthal 
angle, R is the radius of the unperturbed ring and I r 1, I z I < R. The wavenumber m 
is an integer. 

On substituting (2.1) into the equation of motion (3.1) and linearizing in z and r ,  it  
was shown that for moderate values of m (for which it is valid to use (3. 1)), for each m 
the ring oscillates with an ~ngular frequency f am (see Widnall & Sullivan 1973). 

In the case m = 2, the two solutions corresponding to -+a2 can be superposed to 
satisfy the condition that initially the perturbed vortex ring has a plane elliptic form. 
This gives 

where ro and zo are real constants. 
as given by Widnall & Sullivan, it follows that the period of 

oscillations %/a2, which depends on R and ihe internal structure of the vortex (i.e. 
core radius and vorticity distribution), ia given by 

r ( t )  = r,cos(a,t), z ( t )  = zosin(a2t) (2.2) 

Using the value of 

T(R, C, A )  = 8n2R2 - [{4(lnc/R-A)+0~22}{3(lnc/R-A)+2-23}]~, (2.3) r 
where c is the core radius and 
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Here v is the swirl velocity in the core and there is no axial flow in the filament. Note 
that in linearized stability theory the length of the vortex filament remains constant so 
that c must also be a constant (see $3 below). 

The self-induced mean velocity of the ring is that of the unperturbed circular ring, 

V ( R , c , A )  = I ( l n - + A - + ) .  e 8R 
4nR c 

3. The equation of motion and the procedure for numerical integration 
Suppose that in a co-ordinate system h e d  with respect to flow at infinity the centre- 

line of the vortex ring at time t occupies the curve given parametrically byX(5, t )  where 
Eis chosen so that 6 = constant always refers to the same fluid particle. Then, if the 
vortex ring has circulation r, its motion is governed by 

where $ implies that a suitable cut-off is used to make the integral finite at E = Eo. 
Following Moore (1972), the method of cut-off chosen here is that due to Rosenhead. 

Thus in (3.1) the denominator in the integrand is replaced by { IX(&, t )  - X(5, t )  I*  +pa)# 
where p is proportional to c(&, t ) ,  the local radius of the core (assumed to be circular). 
Thus p = 28, c where 8, is determined by evaluating the velocity of a circular vortex 
ring using the cut-off integral and comparing it with the known exact result given by 
Saffman (1970). Thus 

1n2cYR= - + - A  (3.2) 

where A is given by (2.4). The crucial assumption is that p is independent of the geo- 
metric shape of the vortex filament and depends only on the local structure of the 
vortex., Thus the same value of 8, as for a circular vortex ring can be used for a vortex 
filament of any shape provided their local structures are the same. 

Moore & Saffman (1972) show that any variation in the internal structure along the 
length of the filament are smoothed out in a time which is short compared with the 
time scale associated with the change in the geometric configuration of the filament. 
Thus on the time scale of filament motion the core radius c and the swirl velocity w are 
independent of position along the vortex ring. c = c( t )  such that the incompressibility 
constraint is satisfied so that, if L is the length of the vortex ring, Lc2 = constant.? 
Also v = w(r, t ) ,  where r is the radial distance from the centre-line of the ring, so thaty 
in view of the conservation of circulation, 

v = -f(T), r f(1) = 1, 2nr- c 

where f is determined from the initial structure of the vortex. Thus from (2.4) 

(3.3) 

80 that A is a constant throughout the motion, as required. 
t Leonard (1974) hes considered models where the cut-off length is chosen so that volume of 

local filament segment is conserved and also where the influence of diffusion of vorticity is in- 
crorpomfed in the cut-off length. 
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The Lagrangian parameter f is chosen so that in a fixed Cartesian co-ordinate system 
Oxyz, the vortex ring is initially given by 

where a and b are respectively the semi-major and semi-minor axes of the ellipse. 
For time t > 0, it is assumed that the vortex ring retains its symmetry about x = 0 

and y = 0 so that, writing X = (z, y, z )  

X(6,O) = (acosf,bsin[,O), -n < f 6 IT, (3.5) 

y ( - n + f , t )  = -?/(n--6,t) = - y ( f , t )  = y(-E,t), 0 < f < gn. 
x ( - n + E , t )  = z ( n - f , t )  = - x ( f , t )  = - x ( - t , t ) ,  

z( - n + 5, t )  = z(n - 5, t )  = z ( f ,  t )  = z( - f ,  t ) ,  
(3.6) 

Hence it is only necessary to follow, say, the portion 0 6 E < in of the ring to obtain 
the shape of the whole ring. 

The evolution of the vortex ring can now be determined by simply integrating (3.1) 
forward in time and calculating the length of the filament at each time step to obtain 
the value of p ( t ) .  However, the integrand in the cut-off integral, although it is finite 
everywhere, is large in the neighbourhood of to. For near f o  (suppressing the explicit 
time-dependence for convenience), 

I 

where 0 implies that the quantities are evaluated at fo  and 

This would cause a loss of accuracy in evaluating the integral. To overcome this 
difficulty, the equation of motion is written as 

The integrand in the first integral is O(1) everywhere while the second integral is 
elementary. 

In  view of the uniformity of the cross-section and conservation of volume, 

where Lo and co are the respective initial values of the length and core radius, of the 

Lo = 4aE(e)  (3.10) vortex ring. For an ellipse 

where e is the eccentricity of the ellipse, e2 = (a2 - b2)/a2, and E(e)  is the complete 
elliptic integral of the second kind (see appendix A for definition). 

OncethevaluesofA andc,aregiven,equations (3.8), (3.6), (3.9)and(3.6) completely 
specify the initial value problem and the evolution of the vortex ring can be determined 
numerically. The interval ( -  n, n) was divided into 4 ( N -  1) portions by 4 N -  3 
equally spaced grid points. The spatial derivatives were calculated using four-point 
centred differences and Simpson’s rule waa used to carry out spatial integration. 



194 M .  R. Dhawk and B. de Bernardinis 

Because of its stability, the fourth-order Runge-Kutta formula waa used to carry out 
the integration forward in time. 

The calculations were carried out for four different eccentricities of the initial 
elliptic ring and the results are described in the next section. 

4. Numeridresults 
The equation of motion is made dimensionless by choosing the semi-major axis a 

aa the unit of length and 47ra2/F aa the unit of time. Thus the dimensionless time t, is 
given by 

r 
4 = 4na2t. (4.1) 

Before calculations can be performed, the value of A in (3.2) and the initkl value of 
the core radius co are needed. These depend on the process of generation of the vortex 
ring. One method of generation in an ideal fluid is to give an impulse to a flat disk of 
elliptic shape and then to dissolve it away. By equating the energy and impulse of the 
disk to that of the resulting vortex ring, in the manner of Taylor (1963), the’core size 
and the circulation of the vortex ring can be evaluated. The details are pursued in 
appendix A. The initial distribution of potential at the edge of the disk given by (A 2) 
suggests that in the core of the resulting vortex ring the appropriate distribution of 
velocity to take is 

w = 0, (4.2) 
r v=- 

27r(cr)t’ 

where v and w are respectively the azimuthal and axial velocities relative to the centre 
of the core and r is the radial distance from it. This implies that in (3.3)f = (r/c)1) so that 

A = 1. (4.3) 

The initial core radius is given by (A 11). For the cases considered here the values are 
tabulated below (table 1); the case b/u = 1 is also included. 

The radius of curvature p of an ellipse varies from a value ba/a at the major axis to a 
value a2/b at the minor axis. The maximum and minimum values of co/p are also shown 
in table 1. 

These values are not small aa required by the cut-off theory. However, in the absence 
of axial flow, the error in the cut-off approximation is of the same order in co/p aa in 
Saffman’s (1970) formula for the velocity of a circular vortex ring. By comparing with 
numerical calculations of the full equations of motion, Fraenkel (1970) and Norbury 
(1973) have shown that Saffman’s formula is fairly good for values of co/p which are 
not small compared with unity. Thus, although no rigorous proof is available, it is 
reasonable to expect that the cut-off theory will hold equally good for such values of 

In any cam the results are not sensitive to the precise value of co/p since the velocity 
obtained from the cut-off theory depends only logarithmically on the cut-off length 
and hence the radius of the core. Thus, as far aa the motion of the centre-line of the 
vortex ring is concerned, the results obtained here are applicable, within a small error, 
to a vortex ring of the same configuration but smaller core size. Only those inferences 
which depend directly on the core size wil l  differ. 

C O l P  
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b/a co/a ( c o / ~ ) -  = coa/b* (co/P)mh = cob/a* 

0.2 0.109 2.73 0.022 
0.4 0.207 1.29 0.083 
0.6 0.287 0.797 0.172 
0.8 0.347 0.542 0.278 
1.0 0-393 0.393 0-393 

TABLE 1. Predicted core-size of vortex ring produced by the process described in appendix A. 

b / a  N At, 

0.2 41 0.0001 
0.4 41 0.001 
0.6 41 0.001 
0.8 21 0.002 

TABLE 2. Number of points per quadrant and time step used. 

Table 2 shows the values of N and time step Atl used in each of the cases considered. 
Trial and error showed that these gave adequate accuracy. Smaller time steps were 
needed with increasing eccentricity of the initial ellipse because of the rapid changes 
associated with the large curvature at the major axis. 

In view of the results of $2, it is anticipated that in the case of small eccentricity the 
vortex ring will oscillate with a period given by (2.3). As a check on the computer 
program, this was verified. In order to measure the oscillations, an amplitude B is 
defined and monitored together with the variance of the points on the ring from a 
plane parallel to the plane of the original ellipse and moving with the velocity of the 
centroid of the ring. If I is the impulse of the vortex ring, the centroid is given by 

(4.4) 
(Saffman 1970) - r (X A t . ~ ) ~ ~ ~  X ( t , )  = - b IZ 2 

where P is the unit tangent to the filament, so that for a ring which is symmetric about 
z = 0 and y = 0 in Cartesian co-ordinates fixed in the plane of the original ellipse, 

since I = rnab is conserved. (This WLUJ checked by evaluating I a t  various times during 
the calculations.) Then amplitude B is defined as 

where 

The variance B is defined as 
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The values of Z(tl) and B(t,) have been plotted against time in figure 1 (a, b). Initially, 
when the vortex ring is flat and elliptic in shape, 2 is zero and B = (a-b)/(a+ b). 
Subsequently, Z and B oscillate in time. For t,  > 0, I: first achieves a minimum at a 
time defined as t,  = 4 ~ 7 ~ .  Except in the caae of b/a = 0.8 the value of the minimum is 
different from zero; the difference is small but not negligible. Thus at t ,  = 47A, the 
vortex ring is flat in the case b/a = 0-8 and nearly so in the other cMes considered. The 
numerical calculations were stopped just after t, = 

For the b/a = 0.8 case the shape of the centre-line of the vortex ring at various 
instants of the evolution is shown in figure 2. At t ,  = 47A, as expected from the value 
of Z(47A), the vortex ring is flat. It is also elliptic in shape with the orientation of its 
axes reversed. Thus in this case the vortex ring oscillates periodically since it can be 
rotated through an angle of 90" to obtain the initial configuration. The time ~ J T ~  is in 
good agreement with the half-period of oscillation of an equivalent perturbed circular 

FIGURE 2. Evolution of the elliptic vortex ring of axes ratio 0.8. 
(a) Plan view, ( b )  side view, (c) end view. 



198 H. R. Dhunak and B. de Bemardinis 
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FIUURE 3. Evolution of the elliptic vortex ring of 8xes ratio 0.6. 
(a) Plan view, (b) side view, (c) end view. 

vortex ring of radius R = 0.9a, given by +((I'/4na8)r(0-9a, 0.347, i)), where r is 
88 in (2.3). 

In the other more eccentric cwes considered, the vortex ring assumes complicated 
forms during the evolution. 

For the b/a = 0.6 and 0.4 cases, the different stages of the evolution are shown in 
figure 3 and figure 4 respectively. At t, = irA, aa expected from X(+rA), the vortex ring 
is not exactly flat. Nor is the shape of the vortex ring elliptic, although the orientation 
of the axes is reversed win b/a = 0.8 case. After t, = #rA, the vortex ring starts deform- 
ing in such a way that the axes tend to attain their initial orientation. Thue, although 
the vortex ring oscillates, the oscillations are not periodic in these cam. Thus a flat 
elliptic vortex ring is not, in general, a periodic solution of the vortex ring configur- 
ations. T~ will be referred to as the 'apparent period' of oscillation of the elliptic 
vortex ring. 
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The different stages of evolution of the vortex ring in the case b/a = 0.2 are shown in 
figure 6. In this case at  t ,  = 01366 ( <  + T ~ ) ,  the points on y = 0 are 0.2140 distanoe 
apart, which implies that the cores are touching. Since the calculations are based on 
the assumption that the separation of such points on the vortex ring is large compared 
with the core radius, the results at  this stage may be viewed with scepticism. However, 
by performing a numerical calculation with vortices in two-dimensions, in which the 
core was allowed for, Moore (1972) was able to show that the Biot-Savart formula gives 
roughly the correct velocity even when the cores are touching. Thus, as Moore point8 
out, it is expected that, while the cores will be distorted so that the cut-off length wil l  
change, the approximations on which the present calculations are bamd will be reason- 
ably adequate even when the core8 are close to each other. 

The relevance of the calculations to the red situation at the instant of touching is 
difficult to assess. However, experiments, due to Fohl & h e r  (1975), Oshima & 

FIGURE 2. Evolution of the elliptic vortex ring of axes ratio 0.8. 
(a) Plan view, ( b )  side view, (c) end view. 
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*T 1.5 

-1.0 -0.5 0 0.5 1.0 

( b )  (C) 

FIGURE 5. Evolution of the elliptio vortex ring of axes ratio 0.2. 
(a) Plan view, (b)  side yew, (c) end view. 

Asaka (1977a, b) and Oshima (1978), with colliding vortex rings suggest that since the 
vortex cores, where they touch, have vorticity of opp site sign, viscous diffusion would 

result would be that the vortex lines would connect on either side of the region of 
contact to form two smaller rings. 

It is not meaningful to continue with the numericql integration beyond the approxi- 
mate instant of touching. However, in order to obtain an estimate of the nearest 
distance of approach of the core centres, it waa decided to carry the integration forward 
in time as far aa possible using the same number of points and time step. Numerical 
instability sets in near y = 0 at t ,  = 0.16 when the two centre-line points on y = 0 are 
0.014a distance apart. The instability is presumably due to this separation distance 
being small compared with the grid spacings and could be remedied by using smaller 
grid spacings and smaller time sup. However, this waa not attempted in view of the 

annihilate the vorticity locally. Although the actu s process is complicated, the net 
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Q TS 

2*of 1 .5 

-1.0 - -0.5 0 0.5 1.0 

(b) (d 
FIQUBE 6. Shape of the vortex ring of 0888 b/a = 0.2 at tl = 0.149 ( > +TA). 

(a) Plan view, (b)  side view, (c) end view. 

dubious implication of the results at  this stage. The shape of the centre-line of the ring 

At t ,  = 6.74( = 0.147), the separation of the two centre-line points on y = 0 is 0.06a. 
The overall length ie greater by 2 yo over its initial value so that the core size is not 
significantly Merent from its initial value. Thue, within logarithmically small error, 
it appears that an elliptic vortex ring of axes ratio 0.2 and core radius c, such that 
c1 > 0.026a would break up into smaller rings before the appclrent half-period 
stage is reached. 

for the e w s  considered me shown in table 3. The rewon 
for tabulating 7N instead of rA is that it is less dependent on the impulse of the 
vortex ring than 7A. T~ is in good agreement with 

a t  t ,  = 0.149 is shown in figure 6. 

The values of 7N = 



202 M .  R. Dhanak and B. de Bernardinis 

0.8 1.213 1-212 3.935 3.925 
0.6 1.220 1.217 4.522 4.506 
0.4 1.290 1-244 5.564 6.425 
0.2 1.47 1.432 7.383 7.142 

TABLE 3. Apparent period of oscillation TN and mean velocity 0 compared with 
7~ and VL respectively. 

- 

where 7 is given by (2.3) and co is tabulated in table 1. For comparison, the values of 7L 
are also shown in table 3. 

It may be of interest to note that the velocity u of the centroid of the ring, defined by 

- &  U=-- 
a dt, (4.9) 

where Z is given by (4.7), oscillates in time about a mean value 

6 is in good agreement with the velocity of an equivalent circular vortex ring, 

with an apparent 
riod approximately equal to 4 ~ ~ .  A plot of 0 against time is shown in figure 1 ( c ) .  

(4.10) 

where V is given by (2.5). For comparison, the values of 8 and V,  for the cases con- 
sidered are shown in table 3. 

5. Experimental measurements 
The elliptic vortex rings were produced by puffing air through sharp-edged elliptic 

orifices of the same eccentricities as those used in the numerical calculations. Each 
orifice, of semi-major axis a,, was cut in a thin plate of 14 cm diameter which was 
mounted on one end of a 70 cm long perspex tube of the same diameter. The other end 
of the tube was smoothly connected to a 8.3 cm diameter brass cylinder which con- 
tained the piston (figure 7). The piston was driven, through a gearbox, by a high torque 
stepping motor which was operated by a logic control circuit. With this arrangement it 
was possible to provide high initial and terminal accelerations with a uniform velocity 
over most of the piston stroke. The acceleration and deceleration times, the top piston 
speed and the length of the stroke could be easily adjusted. In order to provide draught- 
free conditions, the vortex rings were produced in a 40 x 40 x 70 cm perspex box. The 
arrangement made it possible to obtain reproducible vortex rings. 

The experiment consisted of hot-wire anemometer measurements to determine the 
circulation and core size and flow visualization studies to determine the mean trans- 
lational velocity uE, the equivalent ring radius R, and the oscillatory features of the 
vortex rings. 

Glycerine smoke was used to provide flow visualization. The motion of the vortex 
rings was recorded on a 16 mm cine film at  32 frames/s and 64 frames/s. The film was 
analysed to determine the characteristics of the motion of the ring. Starting from the 
moment of generation, the maximum y-displacement (see figure 7), y,\,, of the vortex 
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FIGURE 7. Experimental set-up. 
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FIGURE 8. Plot of y~ 718. distance from the orifice. In the upper half positive y~ is plotted for 
b / a  = 0.6 case and in the lower halfnegative y~ is plotted for b / u  = 0.8 case. The unshaded symbols 
0 and 0 refer to values obtained from a single run while t.he corresponding shaded symbols refer 
to averaged values. 

ring was recorded and Fourier-analysed. Plots of y,,I for the cases 0.6 and 0.8 are shown 
in figure 8 ; the figure also shows the average values of the Y,,~ over five different runs. 
The ends of an oscillation cycle were defined to be the times when Y,,~ was a minimum 
and the time interval between the ends of a oscillation was defined as the oscillation 
time TE, to be compared with the corresponding apparent period r4 of 54. 

A survey of the velocity field in a plane parallel to the plane of the orifice and at a 
fixed distance from it was made by recording hot-wire anemometer signals at various 
positions in the plane. A t  each position, several different recordings were made; for 
each recording, a vortex ring wm produced, checking that the piston velocity had the 
same value each time. For a circular vortex ring, a few hot-wire traces are needed 
(Sallet t Widmayer 1974) to obtain a qualitative description of the flow field. 
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N S )  

FIUURE 9. Non-dimensional voltage output from the hot-wire anemometer, plwed 10cm. from 
the orifice, plotted against time. ----, b/a = 0.8; -, b/a  = 0.4. 

However, in the present case the vortex ring is deforming as it moves and traces at 
several positions are needed. The order of the difficulty of the analysis increases 
when more eccentric cases are considered. The measurements were repeated at a 
further distance from the orifice. 

From the available traces, the ones corresponding to the axis of the ring and the 
centre of the core were identified (see Sallet & Widmayer). For the b/a = 0.8 and 
b/a  = 0.4 cases, these are shown in figure 9. The core-position trace was used to deter- 
mine the core size of the ring. From the axis-position trace, the velocity component u 
along the z-axis can be determined (by symmetry the other components are zero). 
This enables (see, for example, Didden 1977) the circulation r to be determined: 
within a closed curve C containing the vortex core, r is found by integrating the 
velocity along the z axis and closing the curve C outside the z axis at  infinity where u 
and v (y-velocity component, say) are zero. Thus 

where the transformation dz = uEdt has been used. From the cine film, uE is deter- 
mined by analysing the end view of the evolution as the average of the %-velocity of the 
projection on the y-z plane of these points on the vortex ring which lie in its planes 
(fixed) of symmetry. The velocity at  each of these points on the vortex ring is obtained 
by noting its instantaneous z-displacement and numerically differentiating it with 
respect to time. The oscillatory behaviour of uE, anticipated by the numerical 
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Semi-major axes 
Axes ratio of orifioe, a. L W a R = a + i b  r 

b,/a, = b/a (cm) (cm) (cms-l) (cm) (om) C,/a (cmg 8-1) 

0.8 3.1 0.7 11.7 3.38 2.95 0-33 390 
0.6 4 1.4 11.5 4.44 3-55 0.31 332 
0.4 4 1 *2 9.1 4.61 3-22 0.32 370 
0.2 4 0.4 4.0 4-72 2.83 0.23 196 

TABLE 4. Estimates of vortex parameters predicted by method given in appendix B. 

a R = a + ) b  7 r 
bolao = b/a (cm) (om) c ~ / a  (cms-1) (cm*s-1) Re = r/v 

0.8 3.17 2.85 0.31 k0.07 3.0 407 2714 
0.6 4-37 3.5 0-25 k 0.05 2.8 437 2914 
0.4 4.28 2.95 0*29+0.05 2.7 47 1 3140 
0.2 - - 0.26 +_ 0.05 3.0 211 1473 

TABLE 5. Measured values of vortex parameters. 

calculations, was noticeable only in the more eccentric cases and appeared in the 
form of fluctuations approximately about 5 (defined in 94).t 

To obtain estimates of the vortex parameter it is not satisfactory to model the flow 
by a uniform flow past an equivalent disk and use the method described in appendix A;  
see e.g. Sallet (1976). Instead, the estimates are obtained using a model of the flow, 
given by Saffman (1978), in which it is assumed that when the flow is first set into 
motion, the vortex sheet at the orifice behaves locally like a two-dimensional vortex 
sheet formed at the edge of a semi-infinite plate. Then applying the similarity law for 
the roll up of the vortex sheet and using the estimates given by Pullin (1978) for the 
constants associated with-the law, it is possible to obtain estimates of the circulation r, 
the length of the axes and the core size of the ensuing elliptic vortex ring. The details 
are given in appendix B and the estimates for the circulation I?, the semi-major axis a, 
the equivalent radius R and core size C, for the cases considered are given in table 4. 
Here L and W refer to the displacement and velocity respectively of an equivalent slug 
of fluid in the perspex cylinder (see figure 7). The flux of fluid through a cross-section of 
the slug is equated to the flux through the orifice. The fluid velocity in the perspex 
cylinder was checked and found to be approximately uniform over the time of the 
stroke. For comparison, the corresponding measured values are given in table 5 where 
Re ( = r / v )  is the vortex Reynolds number and 7 = 4nuR/I’. 

6. Comparison of numerical and experimental results 
Figure 10 shows the contrast between a vortex ring produced from a circular orifice 

and that produced from an elliptic orifice of axes ratio 0.4. 
For axes ratios b/a = 0.8,0-6 and 0.4, the vortex ring was observed to oscillate in the 

manner anticipated by the numerical calculations. In  fact, qualitative comparisons 
between some of the stills of the vortex ring from the cine film and the computed 

t The oscillations in the mean velocity as well &B in an amplitude oorresponding to ym were also 
observed by Oshima (1972) in the cwe of vortex rings produced in water from a lenticular orifice. 
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FIGURE 10. Comparison between an evolving vortex ring and a 
non-evolving vortex ring. 
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FIQURE 11. The plan view of the evolution of an elliptic vortex ring of axes ratio 0-4. The order 
of the sequenoe is from top to bottom and left to right.The top left-hand frame shows the vortex 
ring just forming. The major axis ofthe orifice is in the horizontal dimtion. The film sequence was 
taken at 32 frames/s. 

configurations in figures 2-4 showed striking resemblence. F i p  11 shows the plan 
view of the evolution of the vortex ring for the case b/a = 0.4. As may be noticed from 
the figure, at the end of the first half cycle the vortex ring assumes the shape shown in 
figure 4 for time Ir,. This shape was observed at  each subsequent end of cycle for three 
cycles indicating that this configuration may be a possible periodic solution of the 
vortex ring. The contortions seen in the photograph in the set of frames on the far 
right in figure I1 are a defect of the photography and do not indicate a short-wave 
instability of the ring; the vortex ring has progremed beyond the depth of focus of 
the camera. However, a short-wave instability of the type described by Widnall& Tsai 
(1077) for a circular vortex ring was eventually observed for the &/a = 0-4 case; 
figure 12 shows eight waves growing on the elliptic vortex ring. The pictures were 
taken at approximately Is after generation time. From Saffman’s (1978) formula 
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FIGURE 12. Vortex ring in the case bla = 0.4 a t  the end of third oscillation showing short-wave 
instability. The sequence waa taken at 32 fremesls. 
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" I  1 

I 
I I I I I .  

I 2.0 4.0 6.0 8.0 b/a 

FIGURE 13. Plot o f  7 / 7 ~  against axes ratio b/a.  The symbol 0 refers to T&L ( i ( a + b ) ,  CE, 1); 
the standaxd errom for these experimental values are also shown. The refers to 
7 ~ / 7 ~  (*(a: + b) ,  c,, I). For b / o  = 0.2, the corresponding times of the break-up of the ring are 
shown by 0 and reepeatively. 

(2.18) with e = 0.62 and R = 2.95cm (see table 5 )  and using his equations (3-6), the 
expected number of waves N on an equivalent circular vortex ring is N = 8 approxi- 
mately. The agreement is remarkably good considering that the observed vortex ring 
is not circular. 

It waa found that in each caae considered, the oscillation time ?B had a greater value 
for each subsequent cycle. This increase in f E  with time is believed to be related to the 
accompanying increase in the equivalent radius of the ring observed a t  the end of each 
oscillation cycle. For the purpose of comparison with numerical computations 

a?, 
TE = - b '  

is defined. The values of &TE for the first half cycle is compared with the corresponding 
numerical values of +?,,, in figure 13. It is found desirable to plot TE/?L (&(a+ b), C,, 1)  
and rN/rL (&(a+b),  co, l), instead of TE and rN in view of the differences in core size 
between that used in the computations and the corresponding observed value. The 
results are in fair agreement in the cmes b/a = 0.8 and 0.6. For the case b/a = 0.4, the 
value of ?E/?L is much greater than rn;/rt. However, the error margin in the value of 
TE/TL is large. This is due to the difficulty in ascertaining the value of l? as a result of the 
high fluctuations in u' observed in this case. 

In  the case b/a = 0.2, the vortex ring was observed to break up into two smaller 
rings as anticipated in J 4, provided the Reynold's number of the flow was high enough 
( r / v  > 1300 approximately). Figure 14 shows the end view of the break-up process. The 
shape of the vortex ring prior to the break-up may be compared with the configurations 
shown in figure 5(c). After break-up, the two ensuing vortex rings are observed to 
oscillate and travel in directions inclined a t  equal angles to the z axis; the size of the 
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FIQURE 15. Detailed plan view of the break-up of the vortex ring 
in the case b / a  = 0.2. 

211 
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angles is such that the vortex rings move almost parallel to each other. At the Reynold‘s 
number of the experiment, the rings were not observed to rejoin. In Sgure 15 individual 
photographs of the plan view of the vortex ring at Werent stages of the break-up 
process are shown.? The time of the break-up of the vortex ring is shown in figure 10; 
the time of the break-up anticipated in $ 4  is also shown in the figure. It may be noted 
that a break-up of the vortex ring also occurs in the case of a ring produced from an 
orifice in the form of a narrow rectangular slit (see Kambe & Takao (1971)); the ring 
breaks up into three smaller rings. 

7. Discussion 
By meam of numerical calculations using the cut-off approximation, it has been 

shown that a flat elliptic vortex ring of axes ratio, 0.8,0.6 and 0.4 oscillates in time, the 
oscillations being periodic only in the &st of these cases. At the end of a half oscillation 
cycle, the deviations of the shape of the vortex ring from an ellipse with the orientation 
of its axes reversed becomes more pronounced as more eccentric cases are considered. 
In the case of a ring of axes ratio 0.2, it is anticipated in $ 4 that the vortex ring would 
break-up through the touching of the cores of distinct portions of the vortex ring. This 
suggests that there is a critical axes ratio, 2 0.2, above which an 
elliptic vortex ring oscillates and below which it breaks up. 

The results from experiments conducted at moderate Reynold’s number 
( r / v  - 2000) are in fair agreement with the results of the numerical computations. The 
vortex ring oscillates in the cmes of axes ratios 0.8,0.6 and 0.4 in a manner strikingly 
similar to that anticipated by the numerical calculations. In the case of the vortex ring 
of axes ratio 0.2, the vortex ring breaks up into two smaller rings; however, the break- 
up only occurs when the Reynold’s number is high enough (r/v > 1300 approximately). 

The vortex trail of an aircraft breaks up into vortex rings rn can be seen from the 
photograph (figure 1) in Crow’s (1970) paper. The photograph shows that in the plane 
of maximum area (the horizontal plane) the vortex rings, when they form, have roughly 
elliptic shape. 

Using, as approximations, the data from Crow’s paper (I’ = 268 m* s-l, so that 
r / v  = 1.8 x lo7, core radius c,, = 2-7 m for a B-47 aircraft of span 36 m and moving at 
220 m s-l), and assuming that each ring when formed has an elliptic shape with axes 
ratio 0-2, is flat and lies in a horizontal plane, the results of $ $ 4 4  suggest that each 
ring would break up into two smaller rings at 107s after the initial ring formation; 
here the influence of other vortex rings in the trail is neglected. Since a vortex ring in 
an aircraft trail, when formed, is not flat and since the axes ratio appears from the 
photograph in Crow’s paper to be closer to 0.16 than 0.2 (also the size of the core is 
comparatively much smaller than that used in the calculations and observed in the 
experiments) it is expected that the actual break up of the vortex ring would occur at 
an earlier time. 

Not enough information is available in the photograph. However, on comparison 
with figure 6, it appears that the break-up may occur 3&40s after the initial ring 
formation. 

t The photographs in figure 16 may be compared with figure 8 of Oshime & Aeeka (1977a) 
which show the ‘ reverse’ process in which two small ciroular vortex rings combine to form one 
large ring of roughly elliptio shepe. 

0.4 > 
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Appendix A. Initial core size used in the numerical calculations 
A process of generation of a vortex ring in a perfect fluid by an impulsive motion and 

subsequent annihilation of a flat elliptic disk is considered here (cf. G. I. Taylor 1963). 
Suppose in Cartesian co-ordinate system, the edge of the disk is given by 

5% y8 
4 b: 
-+- = 1 (a, > b,). 

Then if the disk is moved impulsively from rest at speed U normal to its plane, the 
velocity potential at the disk is given by 

where 

I----  
E(e) ( : :;)'. 

are reapectively the eccentricity of the ellipse and elliptic integral of the second kind. 
The kinetic energy of the flow is given by 

TO = -s/]#zdS. 1 

If now the disk is dissolved away, a finite vortex sheet is left behind, the vortex lines 
being ellipses of the same axes ratio as the disk. Writing x = cr, cos 8, y = dr, sin 8 
(0 B re 6 ly -n < 8 B n), the circulation of the portion (re, 1) for any fixed 8 is, from 
(A 2)s 

This conligwation cannot persist because the self-induced velocity is infinite at re = 1. 
The vortex elements respond in such a way that the stronger vortex lines near re = 1 
tend to roll up the weaker parts near re = 0 round them. Thus the vorticity tends to 
concentrate in an elliptic ring of major axis a and minor axis by say, and of circulation I' 
given by 
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The impulse I and kinetic energy T of a vortex filament are given by Moore & Saffman 
(1972) as 

T = -  X A t^ds 
2 ' f 

where p(s) is the radius of curvature, X is as in (3.1) and V, is approximately given by 
the right-hand side of (3.1) less a velocity of a circular vortex ring of radius p and lying 
along the osculating circle at  X. For an elliptic vortex ring, therefore 

I I, = h a b k  
and 

where K(e) is the elliptic integral of the first kind. 
Following Taylor (1953), it  may be assumed that 

To = TR, ID = IR 
so that using (A 6), we have 

and core radius c,, is 
ab = &,b0 

1 + A  - ( 1  - ie2) - co = 8(ab)4 exp [ - - - 7r2 

246 

Appendix B. Estimate of vortex parameters using Saffman's (1978) model 
Estimates of the circulation I', the core radius co( = C,) and the size of the elliptic 

vortex ring generated can be obtained in the manner suggested by Saffman (1978) for 
circular vortex rings. Here it is assumed that when the flow has just been set into 
motion, and the vortex sheet is of small extent and close to the edge, it behaves like a 
two-dimensional vortex sheet formed a t  the edge of a semi-infinite flat plate lying 
along z = 0, n > 0 (see figure 16a, b) .  Initially the velocity potential is given by 

4 = -adcos*x (B 1) 

where r = (n2 + z2)4 and a is determined by matching to the flow far from the edge. For 
flow through an elliptic orifice of semi-major axis a. and semi-minor axis bo in an 
infinite plane, the normal velocity V ,  a t  the orifice is given by Lamb (1932, p. 151). 
Near a point (xo, yo) on the edge of the ellipse, this is approximately 

4 2  A lnl-4 

a, b i (  1 - e2 cos2 o,)# 

where 47rA is the flux through the hole and e is the eccentricity of the ellipse. By 
comparing this with !!!q , 

Tax x = n  
r=Inl 
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I n  

FIQTJRE 16. 

an estimate of a can be obtained. However, a vanes along the edge of the orifice which 
is undesirable. Thus an average value is taken 

Then for small times, the vortex sheet which appears at the edge depends on a and t 
only. Its centre (Nl, Zl), circulation P(r,) about a small circle centred on the vertex 
of the spiral and total circulation I' shed from the edge is given by 

where cl, cg, cg and c4 are constants (estimates obtained from Pullin's (1978) calculations 
are c1 = 0.08, c, = 0.34, c3 = 4-08, c4 = 2.40). 

If the piston stops moving at time t = W/L where W is the velocity of the piston 
and L is the displacement, the rolled-up vortex sheet breaks away from the edge of 
the orifice. The semi-axes, a and b, core radius C, and circulation I' of the ensuing 
vortex ring are then given by 

, r=c ,a+)  L t  . 

aL Q 
a = a,+cl (w) , b = bo+c, 

Since a/b + ao/bo, the vortex ring will have a different eccentricity from that of the 
orifice. However, for small values of L this change will be small. Also, the interaction 
of the ring with the wall would lead to a decrease in a and b below that given in (B 4) 
(Sheffield 1977). Hence, for the range of eccentricities used here, this discrepancy is 
ignored and a and b are taken to  be 

From (n 1) the awirl velocity in the core is - r-k 
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